Tuesday, 16 August 2011

Blast Furnace Slag


Blast Furnace Slag is formed when iron ore or iron pellets, coke and a flux (either limestone or dolomite) are melted together in a blast furnace. When the metallurgical smelting process is complete, the lime in the flux has been chemically combined with the aluminates and silicates of the ore and coke ash to form a non-metallic product called blast furnace slag. During the period of cooling and hardening from its molten state, BF slag can be cooled in several ways to form any of several types of BF slag products.
Blast Furnace: Combustion material and ore are supplied from the top while an air flow is supplied from the bottom of the chamber. This forces the chemical reaction to take place throughout the ore, not only at the surface.

Granulated SlagGranulated slag is rapidly cooled by large quantities of water to produce a sand-like granule that is primarily ground into a cement commonly known as GGBS (Ground Granulated Blast FurnaceSlag), or Type S slag cement. It is also mixed with Portland cement clinker to make a blended Type 1S cement.


Air-cooled Slag,
Blast furnace slag is allowed to slowly cool by ambient air, is processed through a screening and crushing plant and is processed into many sizes for use primarily as a construction aggregate. Common uses are as aggregates in ready-mix concrete, precast concrete, hot mix asphalt aggregate, septic drain fields and pipe backfill.



Pelletized or Expanded Slag
Pelletized or Expanded Slag is quickly cooled using water or steam to produce a lightweight aggregate that can be used for high fire-rated concrete masonry and lightweight fill applications over marginal soils. Due to its reduced weight, it is perfectly suited for aggregate in lightweight concrete masonry, lightweight ready-mix concrete and lightweight precast concrete



Air-cooled Blast Furnace Slag
This smaller sized aggregate is primarily used in chip and seal applications, also known as "Chip Seal" or "Aggregate Seal Coating", applied to existing pavement surfaces. The primary purpose for Chip and Seal is to achieve a skid resistance on rural pavements and to maximize driving safety. It is also used in concrete masonry and hot mix asphalt.





Air cooled blast furnace slag rip rapThe largest slag aggregate, riprap is a permanent cover of rock used to stabilize shorelines and streambanks, and prevent erosion along slopes and embankments. It is also used in gabion baskets, Mineral Wool manufacture (insulation), and lightweight fil


Slag cement,
Slag cement is commonly found in ready-mix concrete, precast concrete, masonry, soil cement, concrete wallboard, floor leveling compounds and high temperature resistant building products. Its measurable benefits in concrete include improved workability and finishability, high compressive and flexural strengths, and resistance to aggressive chemicals

IMAGE BLAST FURNACE


BLAST FURNACE TOP VIEW FROM TUYERE LEVEL IMAGE


Monday, 15 August 2011

Blast furnace operation-flow diagram

Blast furnace burden softening and melting phenomena: Pellet bulk interaction observation

The cohesive zone in the blast furnace, where ferrous burden materials soften and melt, greatly affects the furnace’s performance. Minimizing the size and lowering the position of the cohesive zone will improve productivity and decrease the coke rate. This work was designed to better understand the softening and melting phenomena of ferrous feed materials. Different experimental techniques were used to allow the observation of different stages of softening and melting. This article examines the interaction between pellets at high temperatures under load. The pellets were reduced to 60 or 80 pct reduction degree (oxide basis), placed in a graphite crucible, and heated under N2 gas flow, while X-ray pictures were taken at regular intervals. In addition, the contractions of the pellets and temperature were recorded. These experiments were performed with individual pellet types as well as with a mixed burden of fluxed with acid pellets at a ratio of 2:1. The dripping of liquid from the pellets occurred at different conditions depending on different reduction degrees. In those experiments where the pellets were reduced to 60 pct, the dripping also varied significantly between the basic fluxed and the other types of pellets. The meltdown of the pellets reduced to 80 pct seems to be controlled by the metallic iron shell. In the pellets reduced to 60 pct, it appears that both the metallic iron and the liquid slag determine the meltdown.

Mixed burden softening and melting phenomena in blast furnace operation

The cohesive zone in the blast furnace (BF) is largely affected by the high temperature properties of the ferrous burden. Lowering and minimising the width of this zone will increase the productivity and performance of the BF. Recently part of the BF ferrous burden has been replaced by direct reduced iron (DRI) and hot briquetted iron (HBI). The objective of the present work is to expand the current understanding of softening and melting (SM) mechanism of ferrous raw materials including DRI, HBI, pellets, lump ore and mixed burdens. A small scale deformation under load experiment was designed to examine the interaction of ferrous burdens. The SM tests were conducted with ferrous burdens in different combinations and parameters such as bed contraction, pressure loss, reduction degree, etc. were measured. In addition, the process was visualised using X-ray fluoroscopy. There were microstructural differences between the ferrous materials which governed the initial compaction of bed. The softening of the single burdens of DRI and HBI occurs owing to softening of iron phase. In mixed burdens composed of DRI and pellets/ lump ore, initial deformation is not affected by the presence of DRI; however the melting of the bed is dependent on the melting of DRI indicating its dominance over other burden components at later stages of deformation. The change in reduction degree between SM temperatures was found to be small.

Thursday, 4 August 2011

HOW A BLAST FURNACE WORKS


Introduction
The purpose of a blast furnace is to chemically reduce and physically convert iron oxides into liquid iron called "hot metal". The blast furnace is a huge, steel stack lined with refractory brick, where iron ore, coke and limestone are dumped into the top, and preheated air is blown into the bottom. The raw materials require 6 to 8 hours to descend to the bottom of the furnace where they become the final product of liquid slag and liquid iron. These liquid products are drained from the furnace at regular intervals. The hot air that was blown into the bottom of the furnace ascends to the top in 6 to 8 seconds after going through numerous chemical reactions. Once a blast furnace is started it will continuously run for four to ten years with only short stops to perform planned maintenance. 

The Process


Iron oxides can come to the blast furnace plant in the form of raw ore, pellets or sinter. The raw ore is removed from the earth and sized into pieces that range from 0.5 to 1.5 inches. This ore is either Hematite (Fe2O3) or Magnetite (Fe3O4) and the iron content ranges from 50% to 70%. This iron rich ore can be charged directly into a blast furnace without any further processing. Iron ore that contains a lower iron content must be processed or beneficiated to increase its iron content. Pellets are produced from this lower iron content ore. This ore is crushed and ground into a powder so the waste material called gangue can be removed. The remaining iron-rich powder is rolled into balls and fired in a furnace to produce strong, marble-sized pellets that contain 60% to 65% iron. Sinter is produced from fine raw ore, small coke, sand-sized limestone and numerous other steel plant waste materials that contain some iron. These fine materials are proportioned to obtain a desired product chemistry then mixed together. This raw material mix is then placed on a sintering strand, which is similar to a steel conveyor belt, where it is ignited by gas fired furnace and fused by the heat from the coke fines into larger size pieces that are from 0.5 to 2.0 inches. The iron ore, pellets and sinter then become the liquid iron produced in the blast furnace with any of their remaining impurities going to the liquid slag.
The coke is produced from a mixture of coals. The coal is crushed and ground into a powder and then charged into an oven. As the oven is heated the coal is cooked so most of the volatile matter such as oil and tar are removed. The cooked coal, called coke, is removed from the oven after 18 to 24 hours of reaction time. The coke is cooled and screened into pieces ranging from one inch to four inches. The coke contains 90 to 93% carbon, some ash and sulfur but compared to raw coal is very strong. The strong pieces of coke with a high energy value provide permeability, heat and gases which are required to reduce and melt the iron ore, pellets and sinter.
The final raw material in the ironmaking process in limestone. The limestone is removed from the earth by blasting with explosives. It is then crushed and screened to a size that ranges from 0.5 inch to 1.5 inch to become blast furnace flux . This flux can be pure high calcium limestone, dolomitic limestone containing magnesia or a blend of the two types of limestone.
Since the limestone is melted to become the slag which removes sulfur and other impurities, the blast furnace operator may blend the different stones to produce the desired slag chemistry and create optimum slag properties such as a low melting point and a high fluidity.
All of the raw materials are stored in an ore field and transferred to the stockhouse before charging. Once these materials are charged into the furnace top, they go through numerous chemical and physical reactions while descending to the bottom of the furnace.
The iron ore, pellets and sinter are reduced which simply means the oxygen in the iron oxides is removed by a series of chemical reactions. These reactions occur as follows:
1) 3 Fe2O3 + CO = CO2 + 2 Fe3O4
Begins at 850° F
2) Fe3O4 + CO = CO2 + 3 FeO
Begins at 1100° F
3) FeO + CO = CO2 + Fe
     or
     FeO + C = CO + Fe
Begins at 1300° F
At the same time the iron oxides are going through these purifying reactions, they are also beginning to soften then melt and finally trickle as liquid iron through the coke to the bottom of the furnace.
The coke descends to the bottom of the furnace to the level where the preheated air or hot blast enters the blast furnace. The coke is ignited by this hot blast and immediately reacts to generate heat as follows:
C + O2 = CO2 + Heat
Since the reaction takes place in the presence of excess carbon at a high temperature the carbon dioxide is reduced to carbon monoxide as follows:
CO2+ C = 2CO
The product of this reaction, carbon monoxide, is necessary to reduce the iron ore as seen in the previous iron oxide reactions.
The limestone descends in the blast furnace and remains a solid while going through its first reaction as follows:
CaCO3 = CaO + CO2
This reaction requires energy and starts at about 1600°F. The CaO formed from this reaction is used to remove sulfur from the iron which is necessary before the hot metal becomes steel. This sulfur removing reaction is:
FeS + CaO + C = CaS + FeO + CO
The CaS becomes part of the slag. The slag is also formed from any remaining Silica (SiO2), Alumina (Al2O3), Magnesia (MgO) or Calcia (CaO) that entered with the iron ore, pellets, sinter or coke. The liquid slag then trickles through the coke bed to the bottom of the furnace where it floats on top of the liquid iron since it is less dense.
Another product of the ironmaking process, in addition to molten iron and slag, is hot dirty gases. These gases exit the top of the blast furnace and proceed through gas cleaning equipment where particulate matter is removed from the gas and the gas is cooled. This gas has a considerable energy value so it is burned as a fuel in the "hot blast stoves" which are used to preheat the air entering the blast furnace to become "hot blast". Any of the gas not burned in the stoves is sent to the boiler house and is used to generate steam which turns a turbo blower that generates the compressed air known as "cold blast" that comes to the stoves.
In summary, the blast furnace is a counter-current realtor where solids descend and gases ascend. In this reactor there are numerous chemical and physical reactions that produce the desired final product which is hot metal. A typical hot metal chemistry follows:
Iron (Fe)
= 93.5 - 95.0%
Silicon (Si)
= 0.30 - 0.90%
Sulfur (S)
= 0.025 - 0.050%
Manganese (Mn)
= 0.55 - 0.75%
Phosphorus (P)
= 0.03 - 0.09%
Titanium (Ti)
= 0.02 - 0.06%
Carbon (C)
= 4.1 - 4.4%
The Blast Furnace Plant


Now that we have completed a description of the ironmaking process, let s review the physical equipment comprising the blast furnace plant.
There is an ore storage yard that can also be an ore dock where boats and barges are unloaded. The raw materials stored in the ore yard are raw ore, several types of pellets, sinter, limestone or flux blend and possibly coke. These materials are transferred to the "stockhouse/hiline" (17) complex by ore bridges equipped with grab buckets or by conveyor belts. Materials can also be brought to the stockhouse/hiline in rail hoppers or transferred from ore bridges to self-propelled rail cars called "ore transfer cars". Each type of ore, pellet, sinter, coke and limestone is dumped into separate "storage bins" (18). The various raw materials are weighed according to a certain recipe designed to yield the desired hot metal and slag chemistry. This material weighing is done under the storage bins by a rail mounted scale car or computer controlled weigh hoppers that feed a conveyor belt. The weighed materials are then dumped into a "skip" car (19) which rides on rails up the "inclined skip bridge" to the "receiving hopper" (6) at the top of the furnace. The cables lifting the skip cars are powered from large winches located in the "hoist" house (20). Some modern blast furnace accomplish the same job with an automated conveyor stretching from the stockhouse to the furnace top.
At the top of the furnace the materials are held until a "charge" usually consisting of some type of metallic (ore, pellets or sinter), coke and flux (limestone) have accumulated. The precise filling order is developed by the blast furnace operators to carefully control gas flow and chemical reactions inside the furnace. The materials are charged into the blast furnace through two stages of conical "bells" (5) which seal in the gases and distribute the raw materials evenly around the circumference of the furnace "throat". Some modern furnaces do not have bells but instead have 2 or 3 airlock type hoppers that discharge raw materials onto a rotating chute which can change angles allowing more flexibility in precise material placement inside the furnace.
Also at the top of the blast furnace are four "uptakes" (10) where the hot, dirty gas exits the furnace dome. The gas flows up to where two uptakes merge into an "offtake" (9). The two offtakes then merge into the "downcomer" (7). At the extreme top of the uptakes there are "bleeder valves" (8) which may release gas and protect the top of the furnace from sudden gas pressure surges. The gas descends in the downcomer to the "dustcatcher", where coarse particles settle out, accumulate and are dumped into a railroad car or truck for disposal. The gas then flows through a "Venturi Scrubber" (4) which removes the finer particles and finally into a "gas cooler" (2) where water sprays reduce the temperature of the hot but clean gas. Some modern furnaces are equipped with a combined scrubber and cooling unit. The cleaned and cooled gas is now ready for burning.
The clean gas pipeline is directed to the hot blast "stove" (12). There are usually 3 or 4 cylindrical shaped stoves in a line adjacent to the blast furnace. The gas is burned in the bottom of a stove and the heat rises and transfers to refractory brick inside the stove. The products of combustion flow through passages in these bricks, out of the stove into a high "stack" (11) which is shared by all of the stoves.
Large volumes of air, from 80,000 ft3/min to 230,000 ft3/min, are generated from a turbo blower and flow through the "cold blast main" (14) up to the stoves. This cold blast then enters the stove that has been previously heated and the heat stored in the refractory brick inside the stove is transferred to the "cold blast" to form "hot blast". The hot blast temperature can be from 1600°F to 2300°F depending on the stove design and condition. This heated air then exits the stove into the "hot blast main" (13) which runs up to the furnace. There is a "mixer line" (15) connecting the cold blast main to the hot blast main that is equipped with a valve used to control the blast temperature and keep it constant. The hot blast main enters into a doughnut shaped pipe that encircles the furnace, called the "bustle pipe" (13). From the bustle pipe, the hot blast is directed into the furnace through nozzles called "tuyeres" (30) (pronounced "tweers"). These tuyeres are equally spaced around the circumference of the furnace. There may be fourteen tuyeres on a small blast furnace and forty tuyeres on a large blast furnace. These tuyeres are made of copper and are water cooled since the temperature directly in front of the them may be 3600°F to 4200°F. Oil, tar, natural gas, powdered coal and oxygen can also be injected into the furnace at tuyere level to combine with the coke to release additional energy which is necessary to increase productivity. The molten iron and slag drip past the tuyeres on the way to the furnace hearth which starts immediately below tuyere level.
Around the bottom half of the blast furnace the "casthouse" (1) encloses the bustle pipe, tuyeres and the equipment for "casting" the liquid iron and slag. The opening in the furnace hearth for casting or draining the furnace is called the "iron notch" (22). A large drill mounted on a pivoting base called the "taphole drill" (23) swings up to the iron notch and drills a hole through the refractory clay plug into the liquid iron. Another opening on the furnace called the "cinder notch" (21) is used to draw off slag or iron in emergency situations. Once the taphole is drilled open, liquid iron and slag flow down a deep trench called a "trough" (28). Set across and into the trough is a block of refractory, called a "skimmer", which has a small opening underneath it. The hot metal flows through this skimmer opening, over the "iron dam" and down the "iron runners" (27). Since the slag is less dense than iron, it floats on top of the iron, down the trough, hits the skimmer and is diverted into the "slag runners" (24). The liquid slag flows into "slag pots" (25) or into slag pits (not shown) and the liquid iron flows into refractory lined "ladles" (26) known as torpedo cars or sub cars due to their shape. When the liquids in the furnace are drained down to taphole level, some of the blast from the tuyeres causes the taphole to spit. This signals the end of the cast, so the "mudgun" (29) is swung into the iron notch. The mudgun cylinder, which was previously filled with a refractory clay, is actuated and the cylinder ram pushes clay into the iron notch stopping the flow of liquids. When the cast is complete, the iron ladles are taken to the steel shops for processing into steel and the slag is taken to the slag dump where it is processed into roadfill or railroad ballast. The casthouse is then cleaned and readied for the next cast which may occur in 45 minutes to 2 hours. Modern, larger blast furnaces may have as many as four tapholes and two casthouses. It is important to cast the furnace at the same rate that raw materials are charged and iron/slag produced so liquid levels can be maintained in the hearth and below the tuyeres. Liquid levels above the tuyeres can burn the copper casting and damage the furnace lining.
CONCLUSION
The blast furnace is the first step in producing steel from iron oxides. The first blast furnaces appeared in the 14th Century and produced one ton per day. Blast furnace equipment is in continuous evolution and modern, giant furnaces produce 13,000 tons per day. Even though equipment is improved and higher production rates can be achieved, the processes inside the blast furnace remain the same. Blast furnaces will survive into the next millenium because the larger, efficient furnaces can produce hot metal at costs competitive with other iron making technologies.